Region:Global
Product Code:GDRB-TR-S001
Artificial Intelligence (AI) in Retail Banking - Thematic Research
Summary
For six decades machine learning (ML) was poised to take off because members of the 'artificial intelligentsia' had already come up with the theoretical models that could make it work. The problem was that they were waiting for rich data sets and affordable 'accelerated computing' technology to ignite it.
These are now becoming more available, and amid a swirl of hype, ML - i.e., software that becomes smarter as it trains itself on large amounts of data - has gone mainstream, and within five years its deployment will be essential to the survival of companies of all shapes and sizes across all sectors.
For many investors, ML=AI; ML is an AI technology that allows machines to learn by using algorithms to interpret data from connected 'things' to predict outcomes and learn from successes and failures.
There are many other AI technologies - from image recognition to natural language processing (NLP), gesture control, context awareness, and predictive APIs - but ML is where most of the investment community's funding has flowed in recent years. It is also the technology most likely to allow machines to ultimately surpass the intelligence levels of humans.
Many companies, like Alphabet, have already become 'AI-first' companies, with machine learning at their core. At the same time, many ML techniques are getting commoditized by being open sourced and pre-packaged into developer toolkits that anyone can use.
Scope
This report is part of our ecosystem of thematic investment research reports, supported by our thematic engine. About our Thematic Research Ecosystem -
- GlobalData has developed a unique thematic methodology for valuing technology, media and telecom companies based on their relative strength in the big investment themes that are impacting their industry. Whilst most investment research is underpinned by backwards looking company valuation models, GlobalData's thematic methodology identifies which companies are best placed to succeed in a future filled with multiple disruptive threats. To do this, GlobalData tracks the performance of the top 600 technology, media and telecom stocks against the 50 most important themes driving their earnings, generating 30,000 thematic scores. The algorithms in GlobalData's thematic engine help to clearly identify the winners and losers within the TMT sector. Our 600 TMT stocks are categorised into 18 sectors. Each sector scorecard has a thematic screen, a risk screen and a valuation screen. Our thematic research ecosystem has a three-tiered reporting structure: single theme, multi-theme and sector scorecard. This report is a Multi-Theme report, covering all stocks, all sectors and all themes, giving readers a strong sense of how everything fits together and how conflicting themes might interact with one another.
Reasons to buy
- Our thematic investment research product, supported by our thematic engine, is aimed at senior (C-Suite) executives in the corporate world as well as institutional investors.
- Corporations: Helps CEOs in all industries understand the disruptive threats to their competitive landscape
- Investors: Helps fund managers focus their time on the most interesting investment opportunities in global TMT.
- Our unique differentiator, compared to all our rival thematic research houses, is that our thematic engine has a proven track record of predicting winners and losers.
1 Table of Contents
PLAYERS 3
TECHNOLOGY BRIEFING 4
Definitions 4
History of machine learning 4
How does deep learning work? 4
TRENDS 7
Technology trends 7
Macro-economic trends 9
Applications of AI in Retail Banking 10
VALUE CHAIN 12
Ten categories of AI software 13
INDUSTRY ANALYSIS 20
The tech sector's angle 20
The Webscale companies 20
Enterprise software players 21
Proprietary datasets are also important 21
AI and ML are transforming the chipset market 21
The two critical components of any successful AI engine 22
WHAT AI MEANS FOR RETAIL BANKS 24
Recommendations for retail banks 24
How AI vendors can sell into the retail banking sector 26
Recommendations for IT vendors 26
Timeline 28
Market size and growth forecasts 30
COMPANIES SECTION 31
Listed tech companies 31
Privately held tech companies 34
Retail banking companies 37
APPENDIX: OUR THEMATIC RESEARCH METHODOLOGY 40
What makes us stand out is that our consultants follows Robust, Refine and Result (RRR) methodology. i.e. Robust for clear definitions, approaches and sanity checking, Refine for differentiating respondents facts and opinions and Result for presenting data with story
We have set a benchmark in the industry by offering our clients with syndicated and customized market research reports featuring coverage of entire market as well as meticulous research and analyst insights.
While we don't replace traditional research, we flip the method upside down. Our dual approach of Top Bottom & Bottom Top ensures quality deliverable by not just verifying company fundamentals but also looking at the sector and macroeconomic factors.
With one step in the future, our research team constantly tries to show you the bigger picture. We help with some of the tough questions you may encounter along the way: How is the industry positioned? Best marketing channel? KPI's of competitors? By aligning every element, we help maximize success.
Our report gives you instant access to the answers and sources that other companies might choose to hide. We elaborate each steps of research methodology we have used and showcase you the sample size to earn your trust.
If you need any support, we are here! We pride ourselves on universe strength, data quality, and quick, friendly, and professional service.